频率派

6.6 频率派统计的病态*

2019-07-16
| 机器学习 | | 频率派 , 置信区间 , p值 , 拟然 , 贝叶斯 | Comment 评论

返回本章目录

我认为说服一个认为"现在的[频率派]统计实践是明智的"的聪明人是很难的,但通过拟然和贝叶斯定理的方法困难会更少。 - George Box,1962年。

频率派统计表现出各种形式的奇怪和不良行为,称之为病态(pathologies)。 我们在下面举几个例子,以提醒读者; 这些和其他实例在(Lindley 1972; Lindley和Phillips 1976; Lindley 1982; Berger 1985; Jaynes 2003; Minka 1999)中有更详细的解释。

...

6.3 频率派决策理论

2019-07-14
| 机器学习 | | 频率派 , 风险 , 贝叶斯 , 估计器 , 决策规则 , 悖论 | Comment 评论

返回本章目录

在频率派或经典决策理论中,存在一个损失函数和一个拟然,但没有先验因而没有后验或后验预期损失。 因此,与贝叶斯情况不同,没有自动推导出最优估计器的方法。 相反,在频率派方法中,我们可以自由选择我们想要的任何估计器或决策程序 \(\delta:\mathcal{X} \to \mathcal{A}\)

选择估计器后,我们将其预期损失或风险定义如下:

\[ R(\theta^{\\*},\delta)\overset{\Delta}{=}\mathbb{E}_{p(\tilde{\mathcal{D}}|\theta^{\\*})}\left[L(\theta^{\\*},\delta(\tilde{\mathcal{D}}))\right]=\int{L(\theta^{\\*},\delta(\tilde{\mathcal{D}}))p(\tilde{\mathcal{D}}|\theta^{\\*})d\tilde{\mathcal{D}}} \tag{6.9} \] ...