场及其对称性

场及其对称性

2020-04-24
| 理论物理 | | 场论 , 对称性 | Comment 评论

场的拉格朗日形式,保持明显的洛伦兹协变性。

场的哈密顿形式,依赖于时空的1+3分解,因为时间变量在共轭动量密度中扮演了特殊的角色。

有限维Noether定理,条件更松,每个单参微分同胚群对应一个守恒量

场的Noether定理,有更严格的要求,每个单参等度规群对应一个守恒流

场的拉格朗日处理

物理上的场 \(\phi\) ,是一个时空函数,还可能带有标识其性质的指标。比如:标量场 \(\psi\) ,矢量场 \(\psi^a\) ,旋量场 \(\psi^A\) ,张量场 \(\psi^{ab}\) ……

正如有限维位形 \(q^\mu\) 的拉格朗日量

\[ L=L(q^\mu,\dot{q}^\mu) \]

(无限维)标量场 \(\phi\) 场的拉格朗日量

\[ L=\int_S{\mathscr{L}(\phi,\nabla_a\phi)} \]

其中, \(\phi\) 的定义域是时空流形 \(\mathscr{L}\) 是拉格朗日密度, \(S\) 是某时刻三维位形流形,对标量场而言 \(\nabla_a\phi=\partial_a \phi\)

进而可写出作用量

\[ S=\int_{t_0}^{t_1}{L\ dt}=\boxed{\int_D{\mathscr{L}(\phi,\nabla_a\phi)}}=\int_D{\mathscr{L}(\phi,\nabla_a\phi)\boldsymbol{\varepsilon}} \]

其中, \(D\) 是四维时空位形(如图),由固定的初始三维空间位形 \(A\) 和固定的终了三维空间位形 \(B\) 围成, \(\boldsymbol{\varepsilon}\) 是时空度规适配体元。

0131.svg

根据最小作用原理,可写出标量场的欧拉-拉格朗日方程(以前的笔记推导过,不再复述):

\[ \boxed{\frac{\partial \mathscr{L}}{\partial \phi}=\nabla_a\frac{\partial \mathscr{L}}{\partial(\nabla_a\phi)}} \]

考虑两个相差一个四维散度的拉格朗日密度

\[ \mathscr{L}'=\mathscr{L}+\nabla_a K^a \]

对应的作用量的变分:

\[ \begin{aligned}\delta\int_D{\mathscr{L}'}=&\delta\int_D{\mathscr{L}}+\delta\int_D{\nabla_a K^a}\\ =& \delta\int_D{\mathscr{L}}+\delta\int_D{(\nabla_a K^a) \boldsymbol{\varepsilon}}\quad \textcolor{red}{流形上积分定义}\\ =& \delta\int_D{\mathscr{L}}+\delta\int_{\partial D}{K^a n_a \hat{\boldsymbol{\varepsilon}}}\quad \textcolor{red}{流形上Gauss定理}\\ =& \delta\int_D{\mathscr{L}}\quad \textcolor{red}{固定边界积分的变分为0}\end{aligned} \]

这意味着:拉格朗日密度 \(\mathscr{L}\) 相差一个四维散度 等价于 拉格朗日量 \(L\) 相差一个全导数。 都对应同一个(场)运动方程。

场的哈密顿形式

在哈密顿形式中,也有共轭动量密度 \(\pi\)

\[ \pi=\frac{\partial\mathscr{L}}{\partial \dot{\phi}} \]

注意:前面拉格朗日形式能保持明显的洛伦兹协变性,但哈密顿形式则缺少这种明显性。因为时间变量在共轭动量密度中扮演了特殊的角色。这里已经做了时空的1+3分解:

\[ \boxed{\nabla_\mu=(\nabla_0,\boldsymbol{\nabla})=(\partial/\partial t,\boldsymbol{\nabla})} \]

于是

\[ \dot{\phi}=\nabla_0\phi=\frac{\partial \phi}{\partial t} \]

在此基础上定义哈密顿密度 \(\mathscr{H}\)

\[ \mathscr{H}(\phi,\pi,\boldsymbol{\nabla}\phi)=\mathscr{\pi}\dot{\phi}-\mathscr{L} \]

注意:这个哈密顿量也体现了1+3分解

进而作用量的变分为:

\[ \begin{aligned}0=\delta S&=\int_D{\delta \mathscr{L}}=\int_D{\delta (\pi\dot{\phi}-\mathscr{H})}\\ &= \int_D{\left(\textcolor{blue}{\dot{\phi}\delta \pi+\pi\delta \dot{\phi}}\textcolor{green}{-\frac{\partial \mathscr{H}}{\partial\phi}\delta\phi-\frac{\partial \mathscr{H}}{\partial\pi}\delta\pi-\frac{\partial \mathscr{H}}{\partial(\boldsymbol{\nabla}\phi)}\cdot\delta\boldsymbol{\nabla}\phi}\right)}\\ &= \int_D{\left(\dot{\phi}\delta \pi+\textcolor{blue}{\pi\frac{\partial}{\partial t}\delta \phi}-\frac{\partial \mathscr{H}}{\partial\phi}\delta\phi-\frac{\partial \mathscr{H}}{\partial\pi}\delta\pi\textcolor{green}{-\frac{\partial \mathscr{H}}{\partial(\boldsymbol{\nabla}\phi)}\cdot\boldsymbol{\nabla}(\delta\phi)}\right)}\\ &= \int_D\left(\dot{\phi}\delta \pi+\textcolor{blue}{\frac{\partial}{\partial t}(\pi\delta \phi)-\dot{\pi}\delta \phi}-\frac{\partial \mathscr{H}}{\partial\phi}\delta\phi-\frac{\partial \mathscr{H}}{\partial\pi}\delta\pi \right. \\ &\qquad \left.\textcolor{green}{-\boldsymbol{\nabla}\cdot\left(\frac{\partial \mathscr{H}}{\partial(\boldsymbol{\nabla}\phi)}\delta\phi\right) +\left(\boldsymbol{\nabla}\cdot\frac{\partial \mathscr{H}}{\partial(\boldsymbol{\nabla}\phi)}\right)\delta\phi}\right)\\ &= \int_D{\left\{\left(\dot{\phi}-\frac{\partial \mathscr{H}}{\partial\pi}\right)\delta\pi-\left(\dot{\pi}+\frac{\partial \mathscr{H}}{\partial\phi}-\boldsymbol{\nabla}\cdot\frac{\partial \mathscr{H}}{\partial(\boldsymbol{\nabla}\phi)}\right)\delta\phi\right\}}\\ &\qquad \qquad +\int_D{\frac{\partial}{\partial t}(\pi\delta \phi)}-\int_D{\boldsymbol{\nabla}\cdot\left(\frac{\partial \mathscr{H}}{\partial(\boldsymbol{\nabla}\phi)}\delta\phi\right)}\quad \textcolor{red}{边界上变分为0} \\ &= \boxed{\int_D{\left\{\left(\dot{\phi}-\frac{\partial \mathscr{H}}{\partial\pi}\right)\delta\pi-\left(\dot{\pi}+\frac{\partial \mathscr{H}}{\partial\phi}-\boldsymbol{\nabla}\cdot\frac{\partial \mathscr{H}}{\partial(\boldsymbol{\nabla}\phi)}\right)\delta\phi\right\}}} \end{aligned} \]

进而有

\[ \begin{aligned}\dot{\phi}&=\frac{\partial \mathscr{H}}{\partial\pi}\\ \dot{\pi}&=-\frac{\partial \mathscr{H}}{\partial\phi}+\boldsymbol{\nabla}\cdot\frac{\partial \mathscr{H}}{\partial(\boldsymbol{\nabla}\phi)}\end{aligned} \]

场上的Noether定理

(有限维)Noether定理:每一个保持拉格朗日量不变的单参微分同胚群(对称性),必有运动方程组对应的一个首次积分(守恒律)。

这个定理,在有限维的情况下证明过。 这里要考察无限维的张量场 \(\phi\) 下的情况,命题中的拉格朗日量改成拉格朗日密度,所谓"不变",可以精确到相差一个四维散度。

考察一个单参微分同胚 \(h:\mathbb{R}\times D\to D\) ,条件是保证拉格朗日密度 \(\mathscr{L}\) 不变,即:

\[ \mathscr{L}(h^*_s\phi,h^*_s\nabla_a\phi)=\mathscr{L}(\phi,\nabla_a\phi),\quad s\to0,\quad \forall s\in \mathbb{R} \]

其中, \(h_s\) 对标量场和对偶矢量场的自然诱导映射是拉回映射 \(h^*_s\) \(\nabla_a\) 是度规适配导数算符;此外,单参微分同胚群 \(\{h_s\}\) ,可由某个矢量场 \(\xi^a\) 生成。

要注意的是,单参微分同胚不一定保度规,所以变换后度规可能会变,进而其适配导数算符也会变。为了准确描述这个变化,需要将拉格朗日密度改写成:

\[ \mathscr{L}=\mathscr{L}(\phi,\nabla_a\phi,g_{ab}) \]

\(h_s\) 变换后

\[ \mathscr{L}_s=\mathscr{L}(h^*_s\phi,h^*_s\nabla_a\phi,h^*_s g_{ab})=h^*_s \mathscr{L}(\phi,\nabla_a\phi,g_{ab}) \]

进而

\[ \begin{aligned}\xi^a\nabla_a\mathscr{L}&=\mathcal{L}_\xi\mathscr{L}=\left.\frac{d\mathscr{L}_s}{ds}\right|_{s=0}\qquad \textcolor{red}{\mathcal{L}_\xi 表示李导数}\\&=\lim_{s\to 0}\left(\frac{1}{s}(\mathscr{L}(h^*_s\phi,h^*_s\nabla_a\phi,h^*_s g_{ab})-\mathscr{L}(\phi,\nabla_a\phi,g_{ab}))\right)\\ &=\frac{\partial \mathscr{L}}{\partial \phi} \lim_{s\to 0}\left(\frac{1}{s}(h^*_s\phi-\phi)\right)\\ &\qquad +\frac{\partial \mathscr{L}}{\partial (\nabla_a\phi)} \lim_{s\to 0}\left(\frac{1}{s}(h^*_s\nabla_a\phi-\nabla_a\phi)\right)\\ & \qquad + \frac{\partial \mathscr{L}}{\partial (g_{ab})} \lim_{s\to 0}\left(\frac{1}{s}(h^*_s g_{ab}-g_{ab})\right)\\ &=\boxed{\frac{\partial \mathscr{L}}{\partial \phi}\mathcal{L}_{\xi}\phi +\frac{\partial \mathscr{L}}{\partial (\nabla_a\phi)} \mathcal{L}_{\xi}\nabla_a\phi + \frac{\partial \mathscr{L}}{\partial (g_{ab})}\mathcal{L}_{\xi}g_{ab}}\end{aligned} \]

将拉格朗日方程带入得

\[ \xi^a\nabla_a\mathscr{L}=\left(\nabla_a\frac{\partial \mathscr{L}}{\partial(\nabla_a\phi)}\right)\mathcal{L}_{\xi}\phi +\frac{\partial \mathscr{L}}{\partial (\nabla_a\phi)} \mathcal{L}_{\xi}\nabla_a\phi + \frac{\partial \mathscr{L}}{\partial (g_{ab})}\mathcal{L}_{\xi}g_{ab} \]

特别地,如果 \(h_s\) 等度规映射,那么 \(\xi^a\) 必然是Killing矢量场,有:

\[ \mathcal{L}_\xi g_{ab}=0\\ \nabla_a\xi^a=g^{ab}\nabla_a\xi_b=g^{(ab)}\nabla_{[a}\xi_{b]}=0\\ \nabla_a\mathcal{L}_\xi\phi=\mathcal{L}_\xi\nabla_a\phi \]

于是有:

\[ \nabla_a\left(\frac{\partial \mathscr{L}}{\partial(\nabla_a\phi)}\mathcal{L}_{\xi}\phi-\xi^a\mathscr{L}\right)=0 \]

可见矢量场

\[ \boxed{J^a=\frac{\partial \mathscr{L}}{\partial(\nabla_a\phi)}\mathcal{L}_{\xi}\phi-\xi^a\mathscr{L}} \]

满足连续性方程:

\[ \boxed{\nabla_a J^a=0} \]

进而 \(J^a\) 代表某种守恒流密度

(场)Noether定理:每一个保持拉格朗日密度不变的单参等度规群(对称性),必有场方程对应的一个连续性(守恒律)。

特别地,对闵氏时空而言,存在10个独立Killing矢量场 \(\xi^a\) ,相应就有10个独立守恒密度流 \(J^a\)

比如,考虑时间平移Killing矢量场 \(\xi^a=(\partial/\partial t)^a\) ,有

\[ J^a=\frac{\partial \mathscr{L}}{\partial(\nabla_a\phi)}(\partial/ \partial t)^b\nabla_b\phi-(\partial/ \partial t)^a\mathscr{L}=\frac{\partial \mathscr{L}}{\partial(\nabla_a\phi)}\nabla_0\phi-(\partial/\partial t)^a\mathscr{L} \]

因此

\[ J^0=\frac{\partial \mathscr{L}}{\partial(\nabla_0\phi)}\nabla_0\phi-\mathscr{L}=\mathscr{\pi}\dot{\phi}-\mathscr{L}=\mathscr{H} \]

此外,还可以定义一个正则能动张量 \(S^{ab}\)

\[ \boxed{S^{ab}\overset{\Delta}{=}-\frac{\partial \mathscr{L}}{\partial(\nabla_a\phi)}\nabla^b\phi+\mathscr{L}g^{ab}} \]

则有:

\[ \boxed{S^{ab}\xi_b=-J^a \qquad \nabla_a S^{ab}=0 } \]

注意: \(\xi^a\) 必须是Killing矢量场,上式才成立。