自由场--现代物理的基础

自由场--现代物理的基础

2020-05-13
| 理论物理 | | 量子场论 , 自由场 , Casimir算符 | Comment 评论

本篇紧接上一篇笔记《半单李代数的Casimir不变算符》。

分两种情况(有质量、无质量)探讨单粒子的物理态表示。

关于物理对称性的总结

本段是前一批相关学习笔记的概要总结。

考虑的闵氏度规是 \(\eta=\mathrm{diag}(-1,1,1,1)\)

为了确保不出错,我在草稿中尽可能又重新计算了一遍。

1)庞加莱群

庞加莱群=洛伦兹群+平移(P)= 旋转(J)+Boost(K)+平移(P)

2)生成元(李代数基底)

\[ \boxed{\begin{aligned}P_\mu &= i\partial_\mu\\ J_i&=-i\varepsilon_i^{\ jk}x_j\partial_k=\frac{1}{2}\varepsilon_i^{\ jk}\textcolor{red}{J_{jk}}\\ K_i &= i(x_i\partial_0 + x_0 \partial_i)=\textcolor{red}{J_{0i}} \end{aligned}}\\ \mu,\upsilon=0,1,2,3\qquad i,j,k=1,2,3 \\ \quad \\ \textcolor{red}{J_{\mu\upsilon}}\overset{\Delta}{=}\begin{pmatrix} 0 & K_1 & K_2 & K_3 \\ -K_1 & 0 & J_3 & -J_2 \\ -K_2 & -J_3 & 0 & J_1 \\ -K_3 & J_2 & -J_1 & 0 \end{pmatrix}\\ J^{i0}=-J_{i0} \quad J^{ij}=J_{ij} \]

3)李代数的结构常数

\[ \boxed{\begin{aligned}\quad &[\textcolor{red}{P_\mu},\textcolor{red}{P_\upsilon}]=0 \quad &[\textcolor{blue}{J_i},\textcolor{blue}{J_j}]=i \ \varepsilon^k_{\ \ ij}\textcolor{blue}{J_k} \\& [\textcolor{green}{K_i},\textcolor{green}{K_j}]=-i\ \varepsilon^k_{\ \ ij}\textcolor{blue}{J_k} \quad & \\& [P_0,\textcolor{blue}{J_i}]=0 \quad &[\textcolor{red}{P_i},\textcolor{blue}{J_j}]=i\ \varepsilon^k_{\ \ ij}\textcolor{red}{P_k} \\ & [P_0,\textcolor{green}{K_i}]=i\ \textcolor{red}{P_i} \quad & [\textcolor{red}{P_i},\textcolor{green}{K_j}]=i\ \delta_{ij}P_0 \quad \\ & [\textcolor{blue}{J_i},\textcolor{green}{K_j}]=i\ \varepsilon^k_{\ \ ij}\textcolor{green}{K_k} \quad & \end{aligned}}\\ \quad \\ [J_{\mu\upsilon},P_\rho]=i(\eta_{\mu\rho}P_\upsilon-\eta_{\upsilon\rho}P_\mu)\\ [J_{\mu\upsilon},J_{\rho\sigma}]=i(\eta_{\mu\rho}J_{\upsilon\sigma}-\eta_{\mu\sigma}J_{\upsilon\rho}-\eta_{\upsilon\rho}J_{\mu\sigma}+\eta_{\upsilon\sigma}J_{\mu\rho}) \]

4)洛伦兹群的表示

我特意用颜色标注了(半)整数对 \((j_{-},j_{+})\) 在洛伦兹群中的地位。

\[ \boxed{\begin{aligned}\Lambda&=\exp\left\{-\frac{\mathbf{i}}{2}\omega_{\mu\upsilon}J^{\mu\upsilon}\right\}=\exp\left\{-\mathbf{i} \boldsymbol{\theta}\cdot\boldsymbol{J}+\mathbf{i} \boldsymbol{\alpha}\cdot \boldsymbol{K}\right\}\\ &=\exp\left\{(\textcolor{blue}{j_{+}-j_{-}})\boldsymbol{\alpha}\cdot\boldsymbol{\sigma}-\mathbf{i}(\textcolor{red}{j_{+}+j_{-}}) \boldsymbol{\theta}\cdot\boldsymbol{\sigma}\right\}\end{aligned}}\\ \quad \\ \omega_{\mu\upsilon}\overset{\Delta}{=}\begin{pmatrix} 0 & \alpha_1 & \alpha_2 & \alpha_3 \\ -\alpha_1 & 0 & \theta_3 & -\theta_2 \\ -\alpha_2 & -\theta_3 & 0 & \theta_1 \\ -\alpha_3 & \theta_2 & -\theta_1 & 0 \end{pmatrix}\\ \omega^{i0}=-\omega_{i0}\quad \omega^{ij}=\omega_{ij}\\ \quad \\ \boldsymbol{J}=J_{-}+J_{+}=(\textcolor{red}{j_{-}+j_{+}})\boldsymbol{\sigma}=\textcolor{red}{j}\boldsymbol{\sigma}\\ \boldsymbol{K}=\mathbf{i}(J_{-}-J_{+})=\mathbf{i}(\textcolor{blue}{j_{-}-j_{+}})\boldsymbol{\sigma}\\ \quad \\ \boldsymbol{J}_{+}=j_{+}\boldsymbol{\sigma}\quad \boldsymbol{J}_{-}=j_{-}\boldsymbol{\sigma} \]

5)自旋的表示

由于洛伦兹群的表示可改写成 \[ \boxed{\begin{aligned}\Lambda&=\exp\left\{(\textcolor{blue}{j_{+}-j_{-}})\boldsymbol{\alpha}\cdot\boldsymbol{\sigma}-\mathbf{i}(\textcolor{red}{j_{+}+j_{-}}) \boldsymbol{\theta}\cdot\boldsymbol{\sigma}\right\}\\ & = \exp\left\{\textcolor{blue}{j_{-}}(-\boldsymbol{\alpha}-\mathbf{i} \boldsymbol{\theta})\cdot\boldsymbol{\sigma}\right\}\exp\left\{\textcolor{red}{j_{+}}(\boldsymbol{\alpha}-\mathbf{i} \boldsymbol{\theta})\cdot\boldsymbol{\sigma}\right\}\\ &=\left(\overline{L^{-1}}\right)^{\ \textcolor{blue}{2j_{-}}}L^{\ \textcolor{red}{2j_{+}}}\end{aligned}}\\ \quad \\ L\overset{\Delta}{=}\exp\left\{\frac{1}{2}(\boldsymbol{\alpha}-\mathbf{i} \boldsymbol{\theta})\cdot\boldsymbol{\sigma}\right\} \] 这说明: \[ \mathfrak{so}(1,3)\cong \mathfrak{su}(2)\otimes\mathfrak{su}(2) \] 自旋(旋量张量)可用一对(半)整数 \((j_{-},j_{+})\) 标记,若取 \(j=j_{-}+j_{+}\) ,则对应 \(\color{red}{\text{自旋-}j}\) 。 比如:

  • 自旋0,可用 \((j_{-},j_{+})=(0,0)\) 表示;
  • 自旋1/2,可用 \((j_{-},j_{+})=(\frac{1}{2},0)\) \((j_{-},j_{+})=(0,\frac{1}{2})\) 表示;
  • 自旋1,可用 \((j_{-},j_{+})=(\frac{1}{2},\frac{1}{2})\) 表示。

庞加莱群的表示用两个标量来标记: \(m,j\) 。其中 \(m\) 可取任意值, \(j\) 只能取(半)整数。

6)两个Casimir算符

两个庞加莱群有两个不变量,与任意庞加莱李代数元素对易。可用Casimir算符作用于最高权对应的本征值标记: \[ P_\mu P^\mu=-m^2 \quad W_\mu W^\mu =-m^2 j(j+1)\\ W^\mu=\frac{1}{2}\varepsilon^{\mu\upsilon\rho\sigma}P_\upsilon J_{\rho\sigma} \]

7)基本粒子

庞加莱群的不可约表示的标记就是物理学对基本粒子的标记质量 \(m\) 自旋 \(j\) 。至于粒子的更多特征量(比如:电荷)将从内禀对称性导出。

相应地,基本粒子可分为如下几种:

  • 自旋1:由标量(记作: \(\Phi\) \(\phi\) )描述,标量按庞加莱群的 \((0,0)\) 表示来变换
  • 自旋1/2:由旋量(记作: \(\Psi\) \(\phi_A\) )描述,标量按庞加莱群的 \((\frac{1}{2},0)\oplus(0,\frac{1}{2})\) 表示来变换
  • 自旋1:由矢量二阶旋量张量(记作: \(A\) \(\phi_{AB}\) )描述,标量按庞加莱群的 \((\frac{1}{2},\frac{1}{2})=(\frac{1}{2},0)\otimes(0,\frac{1}{2})\) 表示来变换

注意区分庞加莱群自旋粒子自旋的区分:前者着重于“变换”,后者表示对应的物理量满足这种“变换规律”。

内禀对称性

场论中,有两种对称性:1)拉格朗日密度的时空对称性;2)拉格朗日密度在场自身的变换下也保持不变,这种不变性称为内禀对称性(internal symmetries)。

比如, \(S,S'\) 是两个不同观察者,同一个场 \(\phi\) (省略了标志其性质的指标,比如 \(\phi_A,\phi_{AB}\) \[ S \to \phi(x)\quad S'\to \phi'(x') \]

涉及两重变换: \[ x\to x'\quad \phi\to\phi' \] a \[ \mathcal{J}^a=\frac{\partial\mathscr{L}}{\partial (\nabla_a \phi)}\mathcal{L}_\xi\phi-\xi^a\mathscr{L} \]

考虑闵氏背景时空的一般拉格朗日量密度 \(\mathscr{L}(\phi(x_\mu),\partial_\mu\phi(x_\mu),x_\mu)\) 对称性则意味着在前面两重变换下: \[ \delta\mathscr{L}=0 \] \[ \begin{aligned}0=\delta\mathscr{L}&=\frac{\partial\mathscr{L}}{\partial \phi}\delta\phi+\frac{\partial\mathscr{L}}{\partial (\partial_\mu\phi)}\delta(\partial_\mu\phi)+\frac{\partial\mathscr{L}}{\partial x_\mu}\delta x_\mu\\ &=\frac{\partial\mathscr{L}}{\partial \phi}\delta\phi+\frac{\partial\mathscr{L}}{\partial (\partial_\mu\phi)}\delta(\partial_\mu\phi)+\frac{\partial\mathscr{L}}{\partial x_\mu}\delta x_\mu\end{aligned} \] 注意:

  • 1)只考虑 \(x\to x'\) ,及其诱导的 \(\phi\to\phi'\) ,我以前的笔记涉及过,这就是纯粹的时空对称性
  • 2)内禀对称性,出现在 \(\phi\to\phi'\) 的自身变换,而非 \(x\to x'\) 的诱导变换。

为了描述内禀对称性,不妨把 \(x\to x'\) 这部分变换冻结( \(\delta x_\mu=0\) ),即: \[ \begin{aligned}0=\delta \mathscr{L}&=\frac{\partial\mathscr{L}}{\partial \phi}\delta\phi+\frac{\partial\mathscr{L}}{\partial (\partial_\mu\phi)}\delta(\partial_\mu\phi)\\ &=\partial_\mu\frac{\partial\mathscr{L}}{\partial (\partial_\mu\phi)}\delta\phi+\frac{\partial\mathscr{L}}{\partial (\partial_\mu\phi)}\delta(\partial_\mu\phi)\\ &=\partial_\mu\frac{\partial\mathscr{L}}{\partial (\partial_\mu\phi)}\delta\phi+\frac{\partial\mathscr{L}}{\partial (\partial_\mu\phi)}\partial_\mu(\delta\phi)\\ &=\partial_\mu\left(\frac{\partial\mathscr{L}}{\partial (\partial_\mu\phi)}\delta\phi\right)\end{aligned} \] 得到纯内禀对称性守恒流密度 \(\mathcal{J}^\mu\) : \[ \boxed{\partial_\mu \mathcal{J}^\mu=0 \quad \mathcal{J}^\mu\overset{\Delta}{=}\frac{\partial\mathscr{L}}{\partial (\partial_\mu\phi)}\delta\phi} \]

1)场自身的平移不变性

此时 \(\delta\phi=i\epsilon\) ,即:【注意: \(\epsilon\) 也忽略了和 \(\phi\) 一致标识其性质的下标】 \[ \phi\to\phi'=\phi+i\epsilon \] 这个变换的生成元实际是 \(i \partial/\partial\phi\) ,因为 \[ \phi'=e^{i\epsilon\frac{\partial}{\partial\phi}}\phi\approx(1+i\epsilon\frac{\partial}{\partial\phi})\phi=\phi+i\epsilon \] 带入 \(\partial_\mu \mathcal{J}^\mu=0\) 得(约掉了 \(i\epsilon\) \[ \partial_\mu\left(\frac{\partial\mathscr{L}}{\partial (\partial_\mu\phi)}\right)=0\\ \textcolor{red}{\Longrightarrow }\partial_t\pi=\partial_0\left(\frac{\partial\mathscr{L}}{\partial (\partial_0\phi)}\right)=-\partial_i\left(\frac{\partial\mathscr{L}}{\partial (\partial_i\phi)}\right)\qquad\textcolor{red}{时空1+3分解}\\ \textcolor{red}{\Longrightarrow } \boxed{\begin{aligned}\partial_t\Pi&=\int_V{\partial_t\pi}=-\int_V\partial_i\left(\frac{\partial\mathscr{L}}{\partial (\partial_i\phi)}\right)\boldsymbol{\varepsilon}\\ &=-\int_{\partial V}\left(\frac{\partial\mathscr{L}}{\partial (\partial_i\phi)}\right)n_i\hat{\boldsymbol{\varepsilon}}\qquad\textcolor{red}{流形上高斯定理}\\ &=0 \qquad\textcolor{red}{当V足够大时,“局域性原理”}\end{aligned}} \] 所以有结论:场自身得平移不变性,对应,共轭动量守恒

2)场自身的旋转不变性

此时 \(\delta \phi=\epsilon_{\mu\upsilon}J^{\mu\upsilon}\phi\) ,带入 \(\partial_\mu \mathcal{J}^\mu=0\) 得: \[ \partial_\rho\left(\frac{\partial\mathscr{L}}{\partial (\partial_\rho\phi)}\epsilon_{\mu\upsilon}J^{\mu\upsilon}\phi\right)=0 \]

量子场论的算符

根据Noether定理,我们知道:

  • 动量 \(\hat{p}_i\) ,对应空间平移生成元 \(P_i=i\ \partial_i\)
  • 能量 \(\hat{E}\) ,对应时间平移生成元 \(P_i=i\ \partial_0\) ;
  • 位置 \(\hat{x}_i\) ,没有所谓“位置守恒”的对称性,直接对应 \(\hat{x}_i\to x_i\)

考虑任意一个物理量 \(\phi\) (省略了标志其性质的指标,比如 \(\phi_A,\phi_{AB}\) ),有: \[ \begin{aligned}\ [\hat{p}_i,\hat{x}_j]\phi&=[i\partial_i,x_j]\phi\\ &=i(\partial_i x_j-x_j\partial_i )\phi\\ &=i\partial_i (x_j\phi)-ix_j\partial_i\\ &=\textcolor{blue}{i(\partial_i x_j)\phi+\cancel{ix_j\partial_i\phi}}-\cancel{ix_j\partial_i\phi}\\ &=i\delta_{ij}\phi\end{aligned} \] 即: \[ \boxed{[\hat{p}_i,\hat{x}_j] = i \delta_{ij}} \] 根据Noether定理,我们还知道:

0自旋,Klein-Gordon 方程

1/2自旋,Dirac方程

1自旋,Proca方程